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Abstract. High-level semantic interpretation of (dynamic) visual
imagery calls for general and systematic methods integrating tech-
niques in knowledge representation and computer vision. Towards
this, we position deep semantics, denoting the existence of declar-
ative models –e.g., pertaining space and motion– and correspond-
ing formalisation and methods supporting (domain-independent) ex-
plainability capabilities such as semantic question-answering, re-
lational (and relationally-driven) visuospatial learning, and (non-
monotonic) visuospatial abduction. Rooted in recent work, we sum-
marise and report the status quo on deep visuospatial semantics
—and our approach to neurosymbolic integration and explainable
visuo-spatial computing in that context— with developed methods
and tools diverse settings such as behavioural research in psychol-
ogy, art & social sciences, and autonomous driving.

Visuospatial Intelligence:
Cognitive Vision and Perception

Cognitive vision and perception research addresses (embod-
ied) visual, visuospatial and visuo-locomotive perception and
interaction from the viewpoints of language, logic, spatial
cognition and artificial intelligence. The principal focus is
on a systematic integration of vision and artificial intel-
ligence methods particularly from the viewpoint of (com-
putational) visuospatial intelligence encompassing capabili-
ties such as: commonsense scene understanding; semantic
question-answering (e.g., with image, video); explainable vi-
sual interpretation; analogical inference with visual imagery;
relational concept learning; visuospatial representation learn-
ing; visual perception (e.g., with eye-tracking); multimodal
event perception (e.g., for embodied grounding & simulation)
Cognitive vision presents an emerging line of research bring-
ing together a novel & unique combination of methodologies
from Artificial Intelligence, Vision and Machine Learning,
Cognitive Science and Psychology, Visual Perception, and
Spatial Cognition and Computation.

Deep Semantics: Integrating AI and Vision

The development of domain-independent computational
models of visuospatial intelligence with multimodal human
behavioural stimuli (such as RGB-D, audio, eye-tracking)
requires the representational and inferential mediation of
commonsense and spatio-linguistically rooted abstractions of
space, motion, actions, events and interaction. Driven by this,
and particularly in the backdrop of perceptual sensemaking

Abstraction Spatial, Time, Motion Relations (select sample)
Mereotopology disconnected, external contact, partial overlap, tangential

proper part, non-tangential proper part, proper part, part of,
discrete, overlap, contact

Orientation left, right, collinear, front, back, on, facing towards, facing
away, same direction, opposite direction

Distance, Size adjacent, near, far, smaller, equi-sized, larger
Motion moving: towards, away, parallel; growing / shrinking: verti-

cally, horizontally; splitting / merging; rotation: left, right, up,
down, clockwise, couter-clockwise

Time before, after, meets, overlaps, starts, during, finishes, equals

Table 1: Commonsense Spatio-Temporal Relations for Abstracting
Space, Motion, Spatio-Temporal Structure in Everyday Human In-
teraction

capabilities such as visuospatial question-answering, (rela-
tional) visuospatial concept learning, (non-monotonic) visu-
ospatial abduction, we characterise deep visuospatial seman-
tics by:

I general methods for the processing and semantic inter-
pretation of dynamic visuo-spatial imagery with a particular
emphasis on the ability to abstract, learn, and reason with
cognitively rooted structured / relational characterisations of
commonsense knowledge pertaining to space and motion.
I the existence of declarative (relational) models –e.g.,
pertaining to space, time, space-time, motion, actions &
events, spatio-linguistic conceptual knowledge (e.g., Table
1)– and corresponding formalisation supporting (domain-
neutral) perceptual sensemaking capabilities (e.g., for visual
Q/A and learning, non-monotonic visuospatial abduction)

Formal semantics and computational models of deep (visu-
ospatial) semantics manifest themselves as systematic, gen-
eral, and domain-neutral methods developed by modular but
tight neurosymbolic integration consisting of (Fig. 1):

(D1). Commonsense / Space, Events, Actions, and Change.1

The ability to (declaratively) specify and solve foundational
problems related to (mixed) geometric and qualitative visu-
ospatial representation and reasoning pertaining to temporal,
spatial, and spatio-temporal things, be it abstract regions of

1Commonsense spatio-temporal relations and patterns (Table 1;
e.g. left-of, touching, part-of, during, approaching) offer a human-centered
and cognitively adequate formalism for grounding and logic-based
automated reasoning about embodied spatio-temporal interactions,
e.g., such as those involved in everyday activities involving object
manipulation and control, physical locomotion, interpersonal inter-
action, visuo-spatial thinking.

http://www.cognitive-vision.org
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Figure 1: Deep Semantics Integrating Knowledge Representation and Visual Computing – “multi-modal visuo-auditory computing in
context”.

space, time, space-time, geometric entities and physical ob-
jects, or spatial artefacts without any real physical manifesta-
tion (e.g., shadows of objects, areas of visual attention). The
declarative programming paradigms being alluded to here
are constraint logic programming (CLP) [Jaffar and Maher,
1994], inductive logic programming (ILP) [Muggleton and
Raedt, 1994], and answer set programming (modulo theories)
(ASP, ASPMT) [Brewka et al., 2011; Lee and Meng, 2013].
(D2). Visual Computing / Object Detection, Tracking, Etc.

Robust low-level visual computing foundations (primarily)
driven by state of the art deep learning techniques (for visual
feature detection, tracking etc). In particular: object / peo-
ple detection and tracking (Faster RCNN [Ren et al., 2015;
Bewley et al., 2016], YOLOv3 [Redmon and Farhadi, 2016]),
faces (TinyFaces [Hu and Ramanan, 2016]), body-structure
(OpenPose [Cao et al., 2018]).
With the aim to position neurosymbolic integration(s) (with
D1 and D2), this report summarises recent results and ongo-
ing work from the viewpoints of (I–II) : (I). development of
knowledge representation and reasoning methods (in the CLP,
ILP and ASP family) that enable handling space and motion
as first-class objects within the declarative programming set-
tings afforded by the respective methods under consideration;
in particular, CLP(QS), ILP(QS), and ASPMT(QS) [Bhatt et al.,
2011; Schultz et al., 2018; Suchan et al., 2016a; Walega et al.,
2015]; and (II). practical manifestations of deep semantic rea-
soning and learning capabilities (e.g., Q/A, relational learn-
ing, visuaospatial abduction) in diverse application domains
[Suchan et al., 2019; Suchan et al., 2018a; Suchan et al.,
2018b; Suchan and Bhatt, 2017a; Suchan and Bhatt, 2017b;
Suchan, 2017; Suchan et al., 2016b; Spranger et al., 2016;
Suchan and Bhatt, 2016a; Suchan and Bhatt, 2016b; Dubba
et al., 2011; Dubba et al., 2015].

Semantic Interpretation of Multimodal Stimuli

Cognitive vision research is driven by application areas
where, for instance, the processing and semantic interpreta-
tion of (potentially large volumes of) highly dynamic visuo-
spatial imagery is central: autonomous systems, cognitive
robotics, self-driving vehicles, visuo-auditory media design,
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Figure 2: Out of sight but not out of mind; Abducing occlusion
events to anticipate reappearance; the case of hidden entities: e.g.,
occluded cyclist (top) / vehicle (bottom).

and psychology & behavioural research domains where data-
centred analytical methods are gaining momentum. We sum-
marise select cases in these contexts based on recently pub-
lished and emerging lines of research, in particular [Suchan
et al., 2019; Suchan et al., 2018a; Suchan and Bhatt, 2016a;
Suchan et al., 2016a]:

CASE I. Human-Centred Semantic Explainability Con-
siderations in Autonomous Driving.
Autonomous driving research has developed (and been driven
by) advances in deep learning based computer vision re-
search. Although deep learning based vision & control has
(arguably) been very successful for self-driving vehicles, we
posit that there is a clear need and tremendous potential for
hybrid visual sensemaking solutions, e.g., integrating vision
and semantics, towards fulfilling essential legal and ethical
responsibilities involving explainability, human-centred AI,
and industrial standardisation (e.g, pertaining to representa-
tion, realisation of rules and norms) [Suchan et al., 2019].
I Standardisation & Regulation, Diagnostics etc Current
autonomous driving research is primarily focussed on two
basic considerations: how fast to drive, and which way and
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Figure 3: Semantically Guided Neural Learning – “relational visuospatial structure guided optimisation (of the loss function)”.

how much to steer. For further developments, it will be nec-
essary to have a community consensus on aspects such as rep-
resentation, interoperability, human-centred benchmarks, and
data archival & retrieval mechanisms.2 Ethically driven stan-
dardisation & regulation will require addressing challenges in
semantic visual interpretation, natural / multimodal human-
machine interaction, and high-level data analytics (e.g., for
post hoc diagnostics, dispute settlement). This will necessi-
tate –amongst other things– human-centred qualitative bench-
marks and multifaceted hybrid AI solutions.
I Realtime Visuospatial Abduction Consider the occlusion
scenario in Fig. 2: Car (c) is in-front, and indicating to turn-right;
during this time, person (p) is on a bicycle (b) and positioned front-
right of c and moving-forward. Car c turns-right, during which the
bicyclist <p, b> is not visible. Subsequently, bicyclist <p, b> reap-
pears. This occlusion scenario indicates several challenges
concerning aspects such as: identity maintenance, making de-
fault assumptions, computing counterfactuals, projection, and
interpolation of missing information (e.g., what could be hy-
pothesised about bicyclist <p, b> when it is occluded; how can
this hypothesis enable in planning an immediate next step).
Addressing such challenges —be it realtime or post-hoc—
in view of human-centred AI concerns pertaining to ethics,
explainability and regulation requires a systematic integra-
tion of Semantics and Vision, i.e., robust commonsense rep-
resentation & inference about spacetime dynamics on the one
hand, and powerful low-level visual computing capabilities,
e.g., pertaining to object detection and tracking on the other.
We showcase a general method for online (i.e., incremen-
tal, realtime) visual sensemaking using answer set program-
ming is systematically formalised and fully implemented.
The method integrates state of the art in (deep learning based)
visual computing, and is developed as a modular framework
usable within hybrid architectures for perception & control.
Our evaluation and demo is based on community established
benchmarks KITTIMOD [Geiger et al., 2012] and MOT [Mi-
lan et al., 2016]. As a use-case, we focus on the significance

2Within autonomous driving, the need for standardisation and ethical reg-
ulation has most recently garnered interest internationally, e.g., with the Fed-
eral Ministry of Transport and Digital Infrastructure in Germany taking a lead in
eliciting 20 key propositions (with legal implications) for the fulfilment of ethical
commitments for automated and connected driving systems [BMVI, 2018].

of human-centred visual sensemaking —e.g., semantic rep-
resentation and explainability, question-answering, common-
sense interpolation— in safety-critical autonomous driving
situations.

CASE II. Semantically Guided Neural Learning and
(Explainable) Visuospatial Interpretation
We showcase a computational model (Figs. 3–4) with the ca-
pability to generate semantic, explainable interpretation mod-
els for the analysis of visuospatial symmetry [Suchan et al.,
2018a]; more generally, we emphasis the capability of the
model wherein the incremental learning process itself may
be semantically guided by conceptual visuospatial knowl-
edge (e.g., qualitative description of symmetry, or arbitrary
spatial constraints amongst abstract representations of do-
main entities / visuospatial features by way of points, line-
segments, polygons etc). The explainability is founded on a
domain-independent, mixed qualitative-quantitive represen-
tation of visuo-spatial relations based on which the symme-
try is declaratively characterised. From an applied viewpoint,
the developed methodology is intended to serve as the tech-
nical backbone for assistive and analytical technologies for
visual media studies, e.g., from the viewpoint of behavioural
research in psychology [Suchan et al., 2016b], empirical aes-
thetics, cultural heritage.

I Semantics Guided Optimisation Visuospatial character-
istics (e.g., reflectional symmetry, or other arbitrary discrimi-
nants) can be declaratively formalised in a semantic model by
describing their respective relational structure (see [Suchan et
al., 2018a] for the case of reflectional symmetry). Our pro-
posed system utilises such high-level (spatial) scene descrip-
tions for guiding neural learning by utilising a declarative
model of spatial divergence to calculate loss; i.e., for object
detection the loss for training Faster RCNN may be calcu-
lated based on the divergence of a predicted scene structure
to a high-level characterisation, e.g., coming from an image
description. For assessing the correctness of the predictions
from the neural network the predicted scene model (i.e., the
detected objects and spatial relations between these objects)
can be compared to the spatial characterisation represented
as relational spatial structure. This the divergence of scene
objects from a relational structure are definable based on at-
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Figure 5: Learning Axioms of Visual-Auditory Perception – “Onscreen gaze transition driven shift of visual attention”. (red markers on
each frame correspond to the visual fixation data as obtained via an eye-tracker as part of an visual perception experiment. Media sources (as
per Fair Use): Drive (2011 / Director: Nicolas Winding Refn), The Bad Sleep Well (1960 / Director: Akira Kurosawa)

tributes such as position, size, and class score; for instance,
e.g., for the description "man on elephant" (Fig 3), we calcu-
late the distance of the detected bounding boxes to a configu-
ration that is consistent with the description. Similarly in the
case of a highly symmetrical image (e.g., the Taj Mahal, or
the the movie scene in Fig. 4), we may calculate the diver-
gence of the detected boxes to a symmetrical configuration.
The loss for each detection may then be calculated based on
the spatial (position and size) and the class divergence of the
detected box to the corresponding box fulfilling the spatial
constraints imposed by the image description.
CASE III. Cognitive Vision Foundations for Research in
Psychological and Behavioural Sciences
Our research in this area is broadly driven by the need to
systematically learning high-level behavioural models of em-
bodied multimodal interaction as applicable in varied con-
texts such as visual perception (psychology), environmental
behaviour studies (environmental psychology), human robot
interaction (cognitive robotics). The particular emphasis is on
inducing behavioural models from the viewpoint of psychol-
ogy and related behavioural research domains, where data-
centred analytical methods in naturalistic experimental set-
tings are now gaining momentum.
I Visuo-Auditory Perception Research We demonstrate
the case of cognitive media studies with a focus on (eye-
tracking driven) visual perception of visuo-auditory media
(e.g., narrative film) [Suchan and Bhatt, 2016a; Suchan and
Bhatt, 2016b; Suchan et al., 2016a]. Consider Fig. 5, consist-

ing of three sets of frames from three different film scenes; the
frames are superimposed with the eye-tracking data obtained
as part of an eye-tracking experiment / dataset ([Suchan and
Bhatt, 2016a]) . Here, Θ1 in each of the three sets of frames
corresponding to a gaze transition event of one of the on-
screen characters (as trackable via a head rotation event; Fig.
6). Corresponding to this the gaze transition is a shift of at-
tention (as measurable via eye-tracking data) from one lo-
cation in media to another (in this case, towards the direc-
tion of the gaze of the tracked character). From the viewpoint
of this demo, of particular interest is computational learning
of human reception of media (as recorded within large-scale
experiments) vis-a-vis visuo-auditory computational narra-
tive structure (i.e., geometry of the scene [Suchan and Bhatt,
2016b]) of the medium itself. Indeed, the goal here is to ac-
quire qualitative or high-level knowledge about human be-
haviour from large-scale experiments / multimodal datasets.3

3For the purposes of (a possible presentation at) NeSy 2019, we
restrict to visual computing foundations. However, it is worth not-
ing that in the domain of visual perception, auditory perception is
equally important: the audio analysis focuses on analysing human
speech, and in particular on segmenting parts of the audio where
people are speaking and identifying the different speakers. Towards
this, we first detect speech parts and then cluster the speech parts
for speaker diarization in the following way: (1). Speech detec-
tion. We use RNN based sound event detection [Adavanne and Vir-
tanen, 2017] trained on the DCASE dataset [Stowell et al., 2015]
to detect speech within the audio track; (2). Speaker diarization.
The detected speech parts are used as a basis for clustering speaker
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Conclusion
Driven by a systematic integration of knowledge representa-
tion and computer vision, we report on an established line
of research in computational cognitive vision and perception
focussing on general, systematic methods for the semantic in-
terpretation of dynamic visual imagery. Our experience sug-
gests that deep learning based computer vision is highly pow-
erful; with a little bit of semantics: (1) the performance of
low-level visual computing (e.g., tracking & detection) can
be improved; (2). neural feature learning can be influenced by
high-level semantics, and that semantic models are necessary
for fulfilling capabilities for high-level introspection / expla-
nation / inductive model-building; (3) both knowledge repre-
sentation and low-level vision are essential to realise compu-
tational visual intelligence.
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