
Out of Sight But Not Out of Mind:
An Answer Set Programming Based Online Abduction Framework for

Visual Sensemaking in Autonomous Driving
Jakob Suchan1,3 , Mehul Bhatt2,3 and Srikrishna Varadarajan3

1University of Bremen, Germany
2Örebro University, Sweden

3CoDesign Lab / Cognitive Vision
jsuchan@uni-bremen.de, mehul.bhatt@oru.se, krish@codesign-lab.org

Abstract
We demonstrate the need and potential of system-
atically integrated vision and semantics solutions
for visual sensemaking (in the backdrop of au-
tonomous driving). A general method for online vi-
sual sensemaking using answer set programming is
systematically formalised and fully implemented.
The method integrates state of the art in visual com-
puting, and is developed as a modular framework
usable within hybrid architectures for perception &
control. We evaluate and demo with community
established benchmarks KITTIMOD and MOT. As
use-case, we focus on the significance of human-
centred visual sensemaking —e.g., semantic rep-
resentation and explainability, question-answering,
commonsense interpolation— in safety-critical au-
tonomous driving situations.

1 Motivation
Autonomous driving research has received enormous aca-
demic & industrial interest in recent years. This surge has
coincided with (and been driven by) advances in deep learn-
ing based computer vision research. Although deep learn-
ing based vision & control has (arguably) been successful
for self-driving vehicles, we posit that there is a clear need
and tremendous potential for hybrid visual sensemaking so-
lutions (integrating vision and semantics) towards fulfilling
essential legal and ethical responsibilities involving explain-
ability, human-centred AI, and industrial standardisation (e.g,
pertaining to representation, realisation of rules and norms).

Autonomous Driving: “Standardisation & Regulation”
As the self-driving vehicle industry develops, it will be nec-
essary —e.g., similar to sectors such as medical comput-
ing, computer aided design— to have an articulation and
community consensus on aspects such as representation, in-
teroperability, human-centred performance benchmarks, and
data archival & retrieval mechanisms.1 In spite of major in-
vestments in self-driving vehicle research, issues related to

1 Within autonomous driving, the need for standardisation and
ethical regulation has most recently garnered interest internationally,
e.g., with the Federal Ministry of Transport and Digital Infrastruc-

gets occluded reappears

Figure 1: Out of sight but not out of mind; the case of hidden entities:
an occluded cyclist.

human-centred’ness, human collaboration, and standardisa-
tion have been barely addressed, with the current focus in
driving research primarily being on two basic considerations:
how fast to drive, and which way and how much to steer.
This is necessary, but inadequate if autonomous vehicles are
to become commonplace and function with humans. Ethi-
cally driven standardisation and regulation will require ad-
dressing challenges in semantic visual interpretation, natural
/ multimodal human-machine interaction, high-level data an-
alytics (e.g., for post hoc diagnostics, dispute settlement) etc.
This will necessitate –amongst other things– human-centred
qualitative benchmarks and multifaceted hybrid AI solutions.

Visual Sensemaking Needs Both “Vision & Semantics”
We demonstrate the significance of semantically-driven
methods rooted in knowledge representation and reasoning
(KR) in addressing research questions pertaining to explain-
ability and human-centred AI particularly from the viewpoint
of sensemaking of dynamic visual imagery. Consider the oc-
clusion scenario in Fig. 1:
Car (c) is in-front; during this time, person (p) is on a bicycle
(b) and positioned front-right of c and moving-forward. Car c
turns-right, during which the bicyclist < p, b > is not visible.
Subsequently, bicyclist < p, b > reappears.
The occlusion scenario indicates several challenges concern-
ing aspects such as: identity maintenance, making default as-
sumptions, computing counterfactuals, projection, and inter-
polation of missing information (e.g., what could be hypoth-

ture in Germany taking a lead in eliciting 20 key propositions (with
legal implications) for the fulfilment of ethical commitments for au-
tomated and connected driving systems [BMVI, 2018].

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1879

Events

Cameras

Radars

LIDAR

GPS

High-Level Abduction

Ontology

Semantic Query Processing

Hypothesized Situation

Low-Level
Control

Low-Level
Motion Tracking

Declarative Model of Scene Dynamics
Space

Prediction

Association

Motion Objects

Motion Tracks

Matching

Blocked Visibility Hidden Entity Sudden Stop ...

Occlusion Identity Attachment

Control Decisions

Visual Processing
Object Detaction

Semantic Segmentation
Lane Detection Ego-Motion

assign start end halt resume standby

Hypotheses on
Object Interactions

Joint Optimization
of Scene Dynamics

Object Tracks Observations
for each t in T:

slow_down change_lane

...emergency_break

Trk1

Trk2t1
t2

Trk1

Trk2t1 t2 t3

passing behindgetting occluded
...

ts tets+1

εts+1

MToi = {εts,..., εte} Trk1

Trk2t1
t2

moving together

Pe
rc

eiv
e Decide

Interpret

Online
Vision and

Control

Figure 2: A General Online Abduction Framework / Conceptual Overview

esised about bicyclist < p, b > when it is occluded; how can
this hypothesis enable in planning an immediate next step).
Addressing such challenges —be it realtime or post-hoc— in
view of human-centred AI concerns pertaining to ethics, ex-
plainability and regulation requires a systematic integration
of Semantics and Vision, i.e., robust commonsense repre-
sentation & inference about spacetime dynamics on the one
hand, and powerful low-level visual computing capabilities,
e.g., pertaining to object detection and tracking on the other.
Key Contributions. We develop a general and systematic
declarative visual sensemaking method capable of online
abduction: realtime, incremental, commonsense question-
answering and belief maintenance over dynamic visuospa-
tial imagery. Supported are (1–3): (1). human-centric rep-
resentations semantically rooted in spatio-linguistic primi-
tives as they occur in natural language [Bhatt et al., 2013;
Mani and Pustejovsky, 2012]; (2). driven by Answer Set
Programming (ASP) [Brewka et al., 2011], the ability to ab-
ductively compute commonsense interpretations and expla-
nations in a range of (a)typical everyday driving situations,
e.g., concerning safety-critical decision-making; (3). online
performance of the overall framework modularly integrating
high-level commonsense reasoning and state of the art low-
level visual computing for practical application in real world
settings. We present the formal framework & its implemen-
tation, and demo & empirically evaluate with community es-
tablished real-world datasets and benchmarks, namely: KIT-
TIMOD [Geiger et al., 2012] and MOT [Milan et al., 2016].

2 Visual Sensemaking:
A General Method Driven by ASP
Our proposed framework, in essence, jointly solves the prob-
lem of assignment of detections to tracks and explaining
overall scene dynamics (e.g. appearance, disappearance) in
terms of high-level events within an online integrated low-
level visual computing and high level abductive reasoning
framework (Fig. 2). Rooted in answer set programming, the
framework is general, modular, and designed for integration

as a reasoning engine within (hybrid) architectures designed
for real-time decision-making and control where visual per-
ception is needed as one of the several components. In such
large scale AI systems the declarative model of the scene dy-
namics resulting from the presented framework can be used
for semantic Q/A, inference etc. to support decision-making.

2.1 Space, Motion, Objects, Events
Reasoning about dynamics is based on high-level representa-
tions of objects and their respective motion & mutual interac-
tions in spacetime. Ontological primitives for commonsense
reasoning about spacetime (Σst) and dynamics (Σdyn) are:

Σst: domain-objects O = {o1, ..., on} represent the vi-
sual elements in the scene, e.g., people, cars, cyclists; el-
ements in O are geometrically interpreted as spatial en-
tities E= {ε1, ..., εn}; spatial entities E may be regarded
as points, line-segments or (axis-aligned) rectangles based
on their spatial properties (and a particular reasoning task
at hand). The temporal dimension is represented by time
points T = {t1, ..., tn}. MT oi = (εts , ..., εte) represents
the motion track of a single object oi, where ts and te de-
note the start and end time of the track and εts to εte de-
notes the spatial entity (E) —e.g., the axis-aligned bound-
ing box—corresponding to the object oi at time points ts
to te. The spatial configuration of the scene and changes
within it are characterised based on the qualitative spatio-
temporal relationships (R) between the domain objects. For
the running and demo examples of this paper, positional re-
lations on axis-aligned rectangles based on the rectangle al-
gebra (RA) [Balbiani et al., 1999] suffice; RA uses the rela-
tions of Interval Algebra (IA) [Allen, 1983] RIA ≡ {before,
after, during, contains, starts, started by, finishes, finished by,
overlaps, overlapped by, meets, met by, equal} to relate two ob-
jects by the interval relations projected along each dimension
separately (e.g., horizontal and vertical dimensions).

Σdyn: The set of fluents Φ = {φ1, ..., φn} and events Θ =
{θ1, ..., θn} respectively characterise the dynamic properties
of the objects in the scene and high-level abducibles (Table

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1880

Algorithm 1: Online Abduction(V , Σ)
Data: Visual imagery (V), and
background knowledge Σ ≡def Σdyn ∪ Σst

Result: Visual Explanations (EXP) (Refer Fig. 3)
1 MT ← ∅,Hevents ← ∅
2 for t ∈ T do
3 VOt ← observe(Vt)
4 Pt ← ∅,MLt ← ∅
5 for trk ∈MT t−1 do
6 ptrk ← kalman predict(trk)
7 Pt ← Pt ∪ ptrk
8 for obs ∈ VOt do
9 mltrk,obs ← calc IoU(ptrk, obs)

10 MLt ←MLt ∪mltrk,obs

11 abduce(< Hassign
t , Hevents

t >) (Refer Step 2)

12 Hevents ← Hevents ∪Hevents
t

13 MT t ← update(MT t−1,VOt,Hassign)

14 return EXP ← < Hevents,MT >

1). For reasoning about dynamics (with <Φ, Θ>), we use a
variant of event calculus as per [Ma et al., 2014; Miller et al.,
2013]; in particular, for examples of this paper, the functional
event calculus fragment (Σdyn) of Ma et al. [2014] suffices:
main axioms relevant here pertain to occurs-at(θ, t) denoting
that an event occurred at time t and holds-at(φ, v, t) denoting
that v holds for a fluent φ at time t.2

Σ ≡def Σdyn <Φ, Θ> ∪ Σst <O, E , T ,MT ,R>

2.2 Tracking as Abduction
Scene dynamics are tracked using a detect and track ap-
proach: we tightly integrate low-level visual computing (for
detecting scene elements) with high-level ASP-based abduc-
tion to solve the assignment of observations to object tracks
in an incremental manner. For each time point t we gener-
ate a problem specification consisting of the object tracks and
visual observations and use ASP to abductively solve the cor-
responding assignment problem incorporating the ontological
structure of the domain / data (abstracted with Σ). Steps 1–3
(Alg. 1 & Fig. 3) are as follows:
Step 1. Formulating the Problem Specification The
ASP problem specification for each time point t is given by
the tuple < VOt,Pt,MLt > and the sequence of events
(Hevents) before time point t.

Visual Observations (VOt): Scene elements derived di-
rectly from the visual input data are represented as spatial
entities E , i.e., VOt = {εobs1 , ..., εobsn} is the set of observa-
tions at time t (Fig. 3). For the examples and empirical eval-
uation in this paper (Sec. 3) we focus on Obstacle / Object
Detections – detecting cars, pedestrians, cyclists, traffic lights

2ASP encoding of the domain independent axioms
of the Functional Event Calculus (FEC) used as per:
https://www.ucl.ac.uk/infostudies/efec/fec.lp

Step 1. Problem Specification < VOt,Pt,MLt >
(1) Visual Observations (VOt) e.g., People, Cars, Lanes, (2) Predic-
tions (Pt) of next position and size of object tracks, and (3)Matching

Likelihood (MLt) (IoU between predictions and detections).

obs(obs_0,car,99). ... box2d(obs_16,1078,86,30,44). ...

trk(trk_0,car). ... box2d(trk_0,798,146,113,203). ...

iou(trk_0,obs_0,83921). ... iou(...). ...

Step 2. Abduction based Association generate hypothesis for (1)
matching of tracks and observations (Hassign

t), and (2) high-level
events (Hevents

t) explaining (1).

trk1 trk2 obs2obs1 ... obsn... trk1 trk2... obs1 ... obsn

occurs-at(hides_behind(trk2, trk1), tn+1).

holds-at(visibility(trk2), fully_visible, tn-1).
occurs-at(gets_behind(trk2, trk1), tn).

holds-at(visibility(trk2),
 fully_occluded, tn+1).

holds-at(visibility(trk2),
 partially_occluded, tn).

PREDICT
UPDATE

startend assign assign halt halt assign standby

topology: po IOU: 0.89 IOU: 0.23 IOU: 0.0 tn tn+1topology: po IOU: 0.91 conf: 0.43

Step 3. Finding the Optimal Hypothesis Jointly optimize

Hassign
t andHevents

t by maximizing matching likelihoodMLt and

minimizing event costs.

RESULT. Visuo-Spatial Scene Semantics motion tracks and

corresponding event sequence explaining the motion tracks.

... occurs_at(missing_detections(trk_10),35) ...

occurs_at(...) occurs_at(hides_behind(trk_9,trk_10),41)

occurs_at(unhides_from_behind(trk_9,trk_10),42) ...

Table 2: Computational Steps for Online Visual AbductionFigure 3: Online Visual Abduction; Comp. Steps for each t ∈ T

etc using YOLOv3 [Redmon and Farhadi, 2018]. Further we
generate scene context using Semantic Segementation – seg-
menting the road, sidewalk, buildings, cars, people, trees, etc.
using DeepLabv3+ [Chen et al., 2018], and Lane Detection –
estimating lane markings, to detect lanes on the road, using
SCNN [Pan et al., 2018]. Type and confidence score for each
observation is given by typeobsi and confobsi .

Movement Prediction (Pt): For each track trki changes
in position and size are predicted using kalman filters; this
results in an estimate of the spatial entity ε for the next time-
point t of each motion track Pt = {εtrk1

, ..., εtrkn
}.

Matching Likelihood (MLt): For each pair of tracks
and observations εtrki

and εobsj , where εtrki
∈ Pt

and εobsj ∈ VOt, we compute the likelihood MLt =
{mltrk1,obs1 , ...,mltrki,obsj} that εobsj belongs to εtrki . The
intersection over union (IoU) provides a measure for the
amount of overlap between the spatial entities εobsj and εtrki .

Step 2. Abduction based Association Following per-
ception as logical abduction most directly in the sense of
Shanahan [2005], we define the task of abducing visual expla-
nations as finding an association (Hassign

t) of observed scene

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1881

elements (VOt) to the motion tracks of objects (MT) given
by the predictions Pt, together with a high-level explanation
(Hevents

t), such that [Hassign
t ∧ Hevents

t] is consistent with
the background knowledge and the previously abduced event
sequence Hevents, and entails the perceived scene given by
< VOt,Pt,MLt >:

Σ ∧Hevents ∧ [Hassign
t ∧Hevents

t] |= VOt ∧ Pt ∧MLt

whereHassign
t consists of the assignment of detections to ob-

ject tracks, and Hevents
t consists of the high-level events Θ

explaining the assignments.
We associate objects and observations by finding the best

match between observations VOt and predicted object tracks
Pt. Towards this we use choice rules [Gebser et al., 2014]
(i.e., one of the heads of the rule has to be in the stable
model) for εobsj and εtrki

, generating all possible assign-
ments in terms of assignment actions: assign, start, end,
halt, resume, ignore det, ignore trk, and then maximising the
matching likelihood mltrki,obsj between pairs of spatial enti-
ties for matched observations εobsj and predicted track region
εtrki (See Step 3).I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

For each assignment action we define integrity constraints3

that restrict the set of answers generated by the choice rules,
e.g., the following constraints are applied to assigning an ob-
servation εobsj to a track trki, applying thresholds on the
IoUtrki,obsj and the confidence of the observation confobsj ,
further we define that the type of the observation has to match
the type of the track it is assigned to:

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

Abducible high-level events guide association and serve
as explanations for object dynamics. For the length of this
paper, we restrict to high-level visuo-spatial abducibles per-
taining to object persistence and visibility (Table 1): (1). Oc-
clusion: Objects can disappear or reappear as result of occlu-
sion with other objects; (2). Noise and Missing Observation:
(Missing-)observations can be the result of faulty detections.

Lets take the case of occlusion: functional fluent visibil-
ity could be denoted fully visible, partially occluded or
fully occluded:

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

We define the event hides behind/2, stating that an ob-
ject hides behind another object by defining the conditions

3 Integrity constraints restrict the answer set by eliminating sta-
ble models where the body is satisfied.

EVENTS Description
hides behind(Trk1,Trk2) Trk1 hides behind Trk2.
unhides from behind(Trk1,Trk2) Trk1 unhides from behind

Trk2.
missing detections(Trk) Missing detections in Trk.

FLUENTS Values Description
hidden by(Trk1,Trk2) {true;false} Trk1 is hidden

by Trk2.
visibility(Trk) {fully visible;

partially occluded;
fully occluded}

Visibility state
of Trk.

Table 1: Events and Fluents Explaining (Dis)Appearance

that have to hold for the event to possibly occur, and the
effects the occurrence of the event has on the properties of
the objects, i.e., the value of the visibility fluent changes to
fully occluded.

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

For abducing the occurrence of an event we use choice
rules that connect the event with assignment actions, e.g., a
track getting halted may be explained by the event that the
track hides behind another track.

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

Step 3. Finding the Optimal Hypothesis To ensure an
optimal assignment, we use ASP based optimization to maxi-
mize the matching likelihood between matched pairs of tracks
and detections. Towards this, we first define the matching
likelihood based on the Intersection over Union (IoU) be-
tween the observations and the predicted boxes for each track
as described in [Bewley et al., 2016]:

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

We then maximize the matching likelihood for all assign-
ments, using the build in maximize statement:

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

To find the best set of hypotheses with respect to the obser-
vations, we minimize the occurrence of certain events and as-
sociation actions, e.g., the following optimization statements
minimize starting and ending tracks; the resulting assignment
is then used to update the motion tracks accordingly.

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

It is important here to note that: (1). by jointly abduc-
ing the object dynamics and high-level events we can impose
constraints on the assignment of detections to tracks, i.e., an
assignment is only possible if we can find an explanation sup-
porting the assignment; and (2). the likelihood that an event

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1882

Situation Objects Description
HIDDEN ENTITY entity,

object
traffic participant hid-
den by obstacle

REDUCED VISIBILITY object visibility reduced by
object in front.

SUDDEN STOP vehical vehicle in front stop-
ping suddenly

BLOCKED LANE lane,
object

lane of the road is
blocked by an object.

Table 2: Safety-Critical Situations

occurs guides the assignments of observations to tracks. In-
stead of independently tracking objects and interpreting the
interactions, this yields to event sequences that are consistent
with the abduced object tracks, and noise in the observations
is reduced (See evaluation in Sec. 3).

3 Application & Evaluation
We demonstrate applicability towards identifying and inter-
preting safety-critical situations (e.g., Table 2); these encom-
pass those scenarios where interpretation of spacetime dy-
namics, driving behaviour, environmental characteristics is
necessary to anticipate and avoid potential dangers.
Reasoning about Hidden Entities Consider the situation
of Fig. 4: a car gets occluded by another car turning left and
reappears in front of the autonomous vehicle. Using online
abduction for abducing high-level interactions of scene ob-
jects we can hypothesize that the car got occluded and antici-
pate its reappearance based on the perceived scene dynamics.
The following shows data and abduced events.

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
trk(trk_41, car). trk_state(trk_41, active). ...
box2d(trk_3, 660, 460, 134, 102). ...
box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

We define a rule stating that a hidden object may unhide
from behind the object it is hidden by and anticipate the time
point t based on the object movement as follows:

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

We then interpolate the objects position at time point t to
predict where the object may reappear.

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

For the occluded car in our example we get the following
prediction for time t and position x, y:

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

Based on this prediction we can then define a rule that gives
a warning if a hidden entity may reappear in front of the ve-
hicle, which could be used by the control mechanism, e.g., to
adapt driving and slow down in order to keep safe distance:

hides behind unhides from behind

t220fully_occluded

anticipated reappearance

t180t160 t200

Figure 4: Abducing Occlusion to Anticipate Reappearance

I MATCHING TRACKS AND DETECTIONS

1{ assign(Trk, Det): det(Det, _, _);
end(Trk); ignore_trk(Trk); halt(Trk);
resume(Trk, Det): det(Det, _, _) }1 :- trk(Trk, _).

1{ assign(Trk, Det): trk(Trk, _);
start(Det); ignore_det(Det);
resume(Trk, Det): trk(Trk, _). }1 :- det(Det, _, _).

I INTEGRITY CONSTRAINTS ON MATCHING

:- assign(Trk, Det), not assignment_constraints(Trk, Det).

assignment_constraints(Trk, Det) :-
trk(Trk, Trk_Type), trk_state(Trk, active),
det(Det, Det_Type, Conf), Conf > conf_thresh_assign,
match_type(Trk_Type, Det_Type),
iou(Trk, Det, IOU), IOU > iou_thresh.

I VISIBILITY - FLUENT AND POSSIBLE VALUES

fluent(visibility(Trk)) :- trk(Trk, _).

possVal(visibility(Trk), fully_visible) :- trk(Trk, _).
possVal(visibility(Trk), partially_visible) :- trk(Trk,_).
possVal(visibility(Trk), not_visible) :- trk(Trk, _).

I OCCLUSION - EVENT, EFFECTS AND (SPATIAL) CONSTRAINTS

event(hides_behind(Trk1,Trk2)) :- trk(Trk1,_),trk(Trk2,_).

causesValue(hides_behind(Trk1, Trk2),
visibility(Trk1), not_visible, T) :-

trk(Trk1,_), trk(Trk2,_), time(T).

:- occurs_at(hides_behind(Trk1, Trk2), curr_time),
trk(Trk1,_), trk(Trk2,_),
not position(overlapping_top, Trk1, Trk2).

I GENERATING HYPOTHESES ON EVENTS

1{ occurs_at(hides_behind(Trk, Trk2), curr_time):
trk(Trk2,_); ... }1 :- halt(Trk).

I ASSIGNMENT LIKELIHOOD

assignement_prob(Trk, Det, IOU) :-
det(Det, _, _), trk(Trk, _), iou(Trk, Det, IOU).

I MAXIMIZING ASSIGNMENT LIKELIHOOD

#maximize {(Prob)@1,Trk,Det :
assign(Trk, Det), assignment_prob(Trk, Det, Prob)}.

I OPTIMIZE EVENT AND ASSOCIATION COSTS

#minimize {5@2,Trk: end(Trk)}.
#minimize {5@2,Det: start(Det)}.

trk(trk_3, car). trk_state(trk_3, active). ...
... trk(trk_41, car).trk_state(trk_41, active). ...
... det(det_1, car, 98). ...
box2d(trk_3, 660, 460, 134, 102). ...
... box2d(trk_41, 631, 471, 40, 47). ...

... occurs_at(hides_behind(trk_41,trk_3),179)) ...

anticipate(unhides_from_behind(Trk1, Trk2), T) :-
time(T), curr_time < T,
holds_at(hidden_by(Trk1, Trk2), curr_time),
topology(proper_part, Trk1, Trk2),
movement(moves_out_of, Trk1, Trk2, T).

point2d(interpolated_position(Trk, T), PosX, PosY) :-
time(T), curr_time < T, T1 = T-curr_time,
box2d(Trk1, X, Y,_,_), trk_mov(Trk1, MovX, MovY),
PosX = X+MovX*T1, PosY = Y+MovX*T1.

anticipate(unhides_from_behind(trk_41, trk_2), 202)
point2d(interpolated_position(trk_41, 202), 738, 495)

warning(hidden_entity_in_front(Trk1, T)) :-
time(T), T-curr_time < anticipation_threshold,
anticipate(unhides_from_behind(Trk1, _), T),
position(in_front, interpolated_pos(Trk1, T)).

Empirical Evaluation For online sensemaking, evaluation
focusses on accuracy of abduced motion tracks, real-time
performance, and the tradeoff between performance and ac-
curacy. Our evaluation uses the KITTI object tracking
dataset [Geiger et al., 2012], which is a community estab-
lished benchmark dataset for autonomous cars: it consists of
21 training and 29 test scenes, and provides accurate track
annotations for 8 object classes (e.g., car, pedestrian, van, cy-
clist). We also evaluate tracking results using the more gen-
eral cross-domain Multi-Object Tracking (MOT) dataset
[Milan et al., 2016] established as part of the MOT Chal-
lenge; it consists of 7 training and 7 test scenes which are
highly unconstrained videos filmed with both static and mov-
ing cameras. We evaluate on the available groundtruth for
training scenes of both KITTI using YOLOv3 detections, and
MOT17 using the provided faster RCNN detections.

For evaluating object tracking we consider accuracy
(MOTA) and precision (MOTP) of abduced object tracks fol-
lowing the Clear MOT [Bernardin and Stiefelhagen, 2008]
evaluation schema. Results (Table 3) show that jointly ab-
ducing high-level object interactions together with low-level
scene dynamics increases the accuracy of the object tracks,
i.e, we consistently observe an improvement of about 5%,
from 45.72% to 50.5% for cars and 28.71% to 32.57% for
pedestrians on KITTI, and from 41.4% to 46.2% on MOT.

Online performance and scalability of online abduction
is evaluated with respect to its real-time capabilities.4 (1). We
compare the time & accuracy of online abduction for state of
the art (real-time) detection methods: YOLOv3, SSD [Liu
et al., 2016], and Faster RCNN [Ren et al., 2015] (Fig. 5).
(2). We evaluate scalability of the ASP based abduction on
a synthetic dataset with controlled number of tracks and %
of overlapping tracks per frame. Results (Fig. 5) show that
online abduction can perform with above 30 frames per sec-
ond for scenes with up to 10 highly overlapping object tracks,
and more than 50 tracks with 1fps (for the sake of testing, it
is worth noting that even for 100 objects per frame it only
takes about an average of 4 secs per frame). Importantly, for
realistic scenes such as in the KITTI dataset, abduction runs
realtime at 33.9fps using YOLOv3, and 46.7 using SSD with
lower accuracy but providing good precision.

Discussion of Empirical Results Results show that inte-
grating high-level abduction and object tracking improves the

4Evaluation using a dedicated Intel Core i7-6850K 3.6GHz 6-
Core Processor, 64GB RAM, and a NVIDIA Titan V GPU 12GB.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1883

SEQUENCE Tracking MOTA MOTP ML MT FP FN ID sw. Frag.
KITTI tracking – Cars without Abduction 45.72 % 76.89 % 19.14 % 23.04 % 785 11182 1097 1440
(8008 frames, 636 targets) with Abduction 50.5 % 74.76 % 20.21 % 23.23 % 1311 10439 165 490
KITTI tracking – Pedestrians without Abduction 28.71 % 71.43 % 26.94 % 9.58 % 1261 6119 539 833
(8008 frames, 167 targets) with Abduction 32.57 % 70.68 % 22.15 % 14.37 % 1899 5477 115 444
MOT 2017 without Abduction 41.4 % 88.0 % 35.53 % 16.48 % 4877 60164 779 741
(5316 frames, 546 targets) with Abduction 46.2 % 87.9 % 31,32 % 20.7 % 5195 54421 800 904

Table 3: Evaluation of Tracking Performance; accuracy (MOTA), precision (MOTP), mostly tracked (MT) and mostly lost (ML) tracks,
false positives (FP), false negatives (FN), identity switches (ID Sw.), and fragmentation (Frag.).

DET. Recall MOTA MOTP fpsdet fpsabd

YOLOv3 0.690 50.5 % 74.76 % 45 33.9
SSD 0.599 30.63 % 77.4 % 8 46.7

FRCNN 0.624 37.96 % 72.9 % 5 32.0

m
s/

fra
m

e

No. tracks

1 fps15 fps30 fps

1K

10
0

10

5 10 20 50 100

No. tracks ms/frame fps

5 23.33 42.86
10 31.36 31.89
20 62.08 16.11
50 511.83 1.95

100 3996.38 0.25

Figure 5: Online Performance and Scalability; performance for pre-
trained detectors (DET.) on the ’cars’ class of KITTI dataset, and
processing time relative to the no. of tracks on synthetic dataset.

resulting object tracks and reduce the noise in the visual ob-
servations. For the case of online visual sense-making, ASP
based abduction provides the required performance: even
though the complexity of ASP based abduction increases
quickly, with large numbers of tracked objects the frame-
work can track up to 20 objects simultaneously with 30fps
and achieve real-time performance on the KITTI benchmark
dataset. It is also important to note that the tracking approach
in this paper is based on tracking by detection using a naive
measure, i.e, the IoU (Sec. 2.2; Step 1), to associate obser-
vations and tracks, and it is not using any visual information
in the prediction or association step. Naturally, this results in
a lower accuracy, in particular when used with noisy detec-
tions and when tracking fast moving objects in a benchmark
dataset such as KITTI. That said, due to the modularity of
the implemented framework, extensions with different meth-
ods for predicting motion (e.g., using particle filters or opti-
cal flow based prediction) are straightforward: i.e., improving
tracking is not the aim of our research.

4 Related Work
Answer Set Programming is now widely used as an underly-
ing knowledge representation language and robust method-
ology for non-monotonic reasoning [Brewka et al., 2011;
Gebser et al., 2012]. With ASP as a foundation, and driven
by semantics, commonsense and explainability [Davis and
Marcus, 2015], this research aims to bridge the gap between
high-level formalisms for logical abduction and low-level vi-
sual processing by tightly integrating semantic abstractions
of space-change with their underlying numerical representa-
tions. Within KR, the significance of high-level (abductive)

explanations in a range of contexts is well-established: plan-
ning & process recognition [Kautz, 1991], vision & abduc-
tion [Shanahan, 2005], probabilistic abduction [Blythe et al.,
2011], reasoning about spatio-temporal dynamics [Bhatt and
Loke, 2008], reasoning about continuous spacetime change
[Muller, 1998; Hazarika and Cohn, 2002] etc. Dubba et
al. [2015] uses abductive reasoning in an inductive-abductive
loop within inductive logic programming (ILP). Aditya et
al. [2015] formalise general rules for image interpretation
with ASP. Similarly motivated to this research is [Suchan et
al., 2018], which uses a two-step approach (with one huge
problem specification), first tracking and then explaining (and
fixing) tracking errors; such an approach is not runtime / real-
time capable. In computer vision research there has recently
been an interest to synergise with cognitively motivated meth-
ods; in particular, e.g., for perceptual grounding and inference
[Yu et al., 2015], and combining video analysis with textual
information for understanding events and answering queries
about video data [Tu et al., 2014].

5 Conclusion & Outlook
We develop a novel abduction-driven online (i.e., realtime, in-
cremental) visual sensemaking framework: general, system-
atically formalised, modular and fully implemented. Integrat-
ing robust state-of-the-art methods in knowledge representa-
tion and computer vision, the framework has been evaluated
and demonstrated with established benchmarks. We highlight
application prospects of semantic vision for autonomous driv-
ing, a domain of emerging and long-term significance. Spe-
cialised commonsense theories (e.g., about multi-sensory in-
tegration and multi-agent belief merging, contextual knowl-
edge) may be incorporated based on requirements. Our ongo-
ing focus is to develop a novel dataset emphasising semantics
and (commonsense) explainability; this is driven by mixed-
methods research –AI, Psychology, HCI– for the study of
driving behaviour in low-speed, complex urban environments
with unstructured traffic. Such interdisciplinary studies are
needed to better appreciate the complexity and spectrum of
varied human-centred challenges in autonomous driving, and
demonstrate the significance of integrated vision and seman-
tics solutions in those contexts.

Acknowledgements
Partial funding by the German Research Foundation (DFG)
via the CRC 1320 EASE – Everyday Activity Science and
Engineering” (www.ease-crc.org), Project P3: Spatial Rea-
soning in Everyday Activity is acknowledged.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1884

References
[Aditya et al., 2015] Somak Aditya, Yezhou Yang, Chitta Baral,

Cornelia Fermuller, and Yiannis Aloimonos. Visual common-
sense for scene understanding using perception, semantic parsing
and reasoning. In 2015 AAAI Spring Symposium Series, 2015.

[Allen, 1983] James F. Allen. Maintaining knowledge about tem-
poral intervals. Commun. ACM, 26(11):832–843, 1983.

[Balbiani et al., 1999] Philippe Balbiani, Jean-François Condotta,
and Luis Fariñas del Cerro. A new tractable subclass of the rect-
angle algebra. In Thomas Dean, editor, IJCAI 1999, Sweden,
pages 442–447. Morgan Kaufmann, 1999.

[Bernardin and Stiefelhagen, 2008] Keni Bernardin and Rainer
Stiefelhagen. Evaluating multiple object tracking performance:
The clear mot metrics. EURASIP Journal on Image and Video
Processing, 2008(1):246309, May 2008.

[Bewley et al., 2016] Alex Bewley, Zongyuan Ge, Lionel Ott,
Fabio Ramos, and Ben Upcroft. Simple online and realtime track-
ing. In 2016 IEEE International Conference on Image Processing
(ICIP), pages 3464–3468, 2016.

[Bhatt and Loke, 2008] Mehul Bhatt and Seng W. Loke. Modelling
dynamic spatial systems in the situation calculus. Spatial Cogni-
tion & Computation, 8(1-2):86–130, 2008.

[Bhatt et al., 2013] Mehul Bhatt, Carl Schultz, and Christian
Freksa. The ‘Space’ in Spatial Assistance Systems: Conception,
Formalisation and Computation. In: Representing space in cog-
nition: Interrelations of behavior, language, and formal models.
Series: Explorations in Language and Space. 978-0-19-967991-
1, Oxford University Press, 2013.

[Blythe et al., 2011] James Blythe, Jerry R. Hobbs, Pedro Domin-
gos, Rohit J. Kate, and Raymond J. Mooney. Implementing
weighted abduction in markov logic. In Proc. of 9th Intl. Confer-
ence on Computational Semantics, IWCS ’11, USA, 2011. ACL.

[BMVI, 2018] BMVI. Report by the ethics commission on auto-
mated and connected driving., BMVI: Federal ministry of trans-
port and digital infrastructure, germany, 2018.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczyński. Answer set programming at a glance.
Commun. ACM, 54(12):92–103, December 2011.

[Chen et al., 2018] Liang-Chieh Chen, Yukun Zhu, George Papan-
dreou, Florian Schroff, and Hartwig Adam. Encoder-decoder
with atrous separable convolution for semantic image segmen-
tation. arXiv:1802.02611, 2018.

[Davis and Marcus, 2015] Ernest Davis and Gary Marcus. Com-
monsense reasoning and commonsense knowledge in artificial
intelligence. Commun. ACM, 58(9):92–103, 2015.

[Dubba et al., 2015] Krishna Sandeep Reddy Dubba, Anthony G.
Cohn, David C. Hogg, Mehul Bhatt, and Frank Dylla. Learning
relational event models from video. J. Artif. Intell. Res. (JAIR),
53:41–90, 2015.

[Gebser et al., 2012] Martin Gebser, Roland Kaminski, Benjamin
Kaufmann, and Torsten Schaub. Answer Set Solving in Practice.
Morgan & Claypool Publishers, 2012.

[Gebser et al., 2014] Martin Gebser, Roland Kaminski, Benjamin
Kaufmann, and Torsten Schaub. Clingo = ASP + control: Pre-
liminary report. CoRR, abs/1405.3694, 2014.

[Geiger et al., 2012] Andreas Geiger, Philip Lenz, and Raquel Ur-
tasun. Are we ready for autonomous driving? the kitti vision
benchmark suite. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2012.

[Hazarika and Cohn, 2002] Shyamanta M Hazarika and Anthony G
Cohn. Abducing qualitative spatio-temporal histories from par-
tial observations. In KR, pages 14–25, 2002.

[Kautz, 1991] Henry A. Kautz. Reasoning about plans. chapter
A Formal Theory of Plan Recognition and Its Implementation,
pages 69–124. Morgan Kaufmann Publishers Inc., USA, 1991.

[Liu et al., 2016] Wei Liu, Dragomir Anguelov, Dumitru Erhan,
Christian Szegedy, Scott E. Reed, Cheng-Yang Fu, and Alexan-
der C. Berg. SSD: single shot multibox detector. In ECCV (1),
volume 9905 of LNCS, pages 21–37. Springer, 2016.

[Ma et al., 2014] Jiefei Ma, Rob Miller, Leora Morgenstern, and
Theodore Patkos. An epistemic event calculus for asp-based rea-
soning about knowledge of the past, present and future. In LPAR:
19th Intl. Conf. on Logic for Programming, Artificial Intelligence
and Reasoning, volume 26 of EPiC Series in Computing, pages
75–87. EasyChair, 2014.

[Mani and Pustejovsky, 2012] Inderjeet Mani and James Puste-
jovsky. Interpreting Motion - Grounded Representations for Spa-
tial Language, volume 5 of Explorations in language and space.
Oxford University Press, 2012.

[Milan et al., 2016] Anton Milan, Laura Leal-Taixé, Ian D. Reid,
Stefan Roth, and Konrad Schindler. MOT16: A benchmark for
multi-object tracking. CoRR, abs/1603.00831, 2016.

[Miller et al., 2013] Rob Miller, Leora Morgenstern, and Theodore
Patkos. Reasoning about knowledge and action in an epistemic
event calculus. In COMMONSENSE 2013, 2013.

[Muller, 1998] Philippe Muller. A qualitative theory of motion
based on spatio-temporal primitives. In Anthony G. Cohn et. al.,
editor, KR 1998, Italy. Morgan Kaufmann, 1998.

[Pan et al., 2018] Xingang Pan, Jianping Shi, Ping Luo, Xiaogang
Wang, and Xiaoou Tang. Spatial as deep: Spatial CNN for traf-
fic scene understanding. In Sheila A. McIlraith and Kilian Q.
Weinberger, editors, AAAI 2018. AAAI Press, 2018.

[Redmon and Farhadi, 2018] Joseph Redmon and Ali Farhadi.
Yolov3: An incremental improvement. CoRR, abs/1804.02767,
2018.

[Ren et al., 2015] Shaoqing Ren, Kaiming He, Ross B. Girshick,
and Jian Sun. Faster R-CNN: towards real-time object detection
with region proposal networks. In Annual Conference on Neural
Information Processing Systems 2015, Canada, 2015.

[Shanahan, 2005] Murray Shanahan. Perception as abduction:
Turning sensor data into meaningful representation. Cognitive
Science, 29(1):103–134, 2005.

[Suchan and Bhatt, 2016] Jakob Suchan and Mehul Bhatt. Seman-
tic question-answering with video and eye-tracking data: AI
foundations for human visual perception driven cognitive film
studies. In S. Kambhampati, editor, IJCAI 2016, New York, USA,
pages 2633–2639. IJCAI/AAAI Press, 2016.

[Suchan et al., 2018] Jakob Suchan, Mehul Bhatt, Przemyslaw An-
drzej Walega, and Carl P. L. Schultz. Visual explanation by high-
level abduction: On answer-set programming driven reasoning
about moving objects. In: AAAI 2018. AAAI Press, 2018.

[Tu et al., 2014] Kewei Tu, Meng Meng, Mun Wai Lee, Tae Eun
Choe, and Song Chun Zhu. Joint video and text parsing for under-
standing events and answering queries. IEEE MultiMedia, 2014.

[Yu et al., 2015] Haonan Yu, N. Siddharth, Andrei Barbu, and Jef-
frey Mark Siskind. A Compositional Framework for Grounding
Language Inference, Generation, and Acquisition in Video. J.
Artif. Intell. Res. (JAIR), 52:601–713, 2015.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

1885

