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Abstract
We present a framework and proof-of-concept implementation for functional spatial reasoning within
high-order logic programming. The developed approach extends λProlog to support reasoning over
spatial variables via Constraint Handling Rules. We implement our approach within Embeddable
λProlog Interpreter (ELPI) and demonstrate key features from combined reasoning over spatial
functions and relations. The reported research is an ongoing development of the declarative spatial
reasoning paradigm.
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1 Introduction

Declarative spatial reasoning denotes the ability to (declaratively) specify and solve real-
world problems related to mixed geometric (i.e., quantitative) and qualitative visual and
spatial representation and reasoning [3]; the paradigm emphasises diverse forms of reasoning
capabilities (e.g., question-answering, learning, abduction) with a rich spatio-temporal
ontology where aspects pertaining to space, time, events, actions, change, interaction,
conceptual knowledge may be handled as first-class objects within a systematic formal
artificial intelligence / knowledge representation and reasoning (KR) framework [2]. From
the practical viewpoint of practical KR methods, this encompasses spatial reasoning with
answer set programming [12, 14, 15], constraint logic programming [3, 10], and inductive logic
programming [11]. This paper continues this line of work by developing a KR framework
for reasoning in a seamless, integrated way over spatial functions, spatial relations, and
KR-based domain-specific conceptual knowledge.

In many application areas where space plays a central role, such as architectural design or
Constructive Solid Geometry, it is necessary to not only represent and reason about relations
between spatial entities, but to also express and evaluate functions over spatial entities.
For example, we may want to query the incidence relation between a point (5, 5) and the
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intersection of two polygons A, B. In the context of architectural design, polygons A and
B may be used to represent the visibility space from which a sign and a landmark LA, LB
are visible, and the point may represent an important threshold position where a person is
expected to need to orient themselves as they enter a large open room:
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B may be used to represent the visibility space from which a sign and a landmark LA, LB45

are visible, and the point may represent an important threshold position where a person is46

expected to need to orient themselves as they enter a large open room:47

?- A = polygon [(vertex 0 0), ...],
B = polygon [(vertex 10 0), ...],
incidence Relation (point 5 5) (intersect A B).

The query result is:48

Relation = exterior.

That is, the point is exterior to the intersection region meaning that, in the context of49

architectural design, the sign and the landmark are not mutually visible from the threshold50

position, suggesting that an occupant may lose orientation at that critical location. For a51

second example in the context of Constructive Solid Geometry, suppose we have cube Cube52

that has side length 7 and whose centroid is located at point (5, 5, 5), and sphere Sphere with53

radius 4 and centroid (10,_, 5), such that the Y coordinate of the centroid is unknown (i.e.54

the Y coordinate is an unbound real valued variable). These spatial entities may be defined55

by transforming (translating, scaling) primitive unit-sized entities e.g. a unit cube with side56

length 1 centred at point (0, 0, 0), and a unit sphere with radius 1 centred at (0, 0, 0). We57

then assert that Cube is topologically part of the Sphere:58

?- Cube = translate (vector 5 5 5) (scale 7 unit_cube),
Sphere = translate (vector 10 _ 5) (scale 4 unit_sphere),
topology part_of Cube Sphere.

The query result is:59

false.

This means that no translation can satisfy the required topological relation, due to the cube60

being too large to be part of the sphere.61

In this paper we show that reasoning over the combination of spatial functions and spatial62

relations overcomes numerical instability problems in certain well-defined cases (that would63

otherwise result in logical inconsistencies), and provides significantly more computationally64

e�cient query answering. Returning to the architecture example above, suppose that the65

visibility spaces A,B are disconnected: the intersection of A and B will be the empty (void)66

region, to which every point is necessarily exterior. Therefore, the result that Relation =67

exterior is arrived at based on purely qualitative spatial reasoning, thus avoiding the need68

for potentially expensive and unstable numerical computations of polygon intersections, and69

point-region incidence checks.70

In this paper we develop the foundations for reasoning about spatial functions in logic71

programming, ⁄Prolog(QS), based on the ⁄Prolog framework extended with constraint72

programming. Based on previous work we target a specific class of qualitative spatial73

constraints that we formulate in the framework of polynomial constraint solving [3, 14]. Our74

key contributions, and the novel features provided by our integration of spatial reasoning in75

⁄Prolog, are:76

integrated reasoning about both spatial functions and spatial relations (Section 4);77

by representing spatial functions as abstract syntax trees we can avoid logical inconsist-78

encies that arise from numerical instabilities when computing intermediate functions79

(Section 5).80

a proof-of-concept implementation of ⁄Prolog(QS)with query examples is available at:81

http://think-spatial.org/Resources/LamPrologQS.zip82

The query result is:

20:2 ⁄Prolog(QS): Functional spatial reasoning in higher order logic programming

intersection of two polygons A, B. In the context of architectural design, polygons A and44

B may be used to represent the visibility space from which a sign and a landmark LA, LB45

are visible, and the point may represent an important threshold position where a person is46

expected to need to orient themselves as they enter a large open room:47

?- A = polygon [(vertex 0 0), ...],
B = polygon [(vertex 10 0), ...],
incidence Relation (point 5 5) (intersect A B).

The query result is:48

Relation = exterior.

That is, the point is exterior to the intersection region meaning that, in the context of49

architectural design, the sign and the landmark are not mutually visible from the threshold50

position, suggesting that an occupant may lose orientation at that critical location. For a51

second example in the context of Constructive Solid Geometry, suppose we have cube Cube52

that has side length 7 and whose centroid is located at point (5, 5, 5), and sphere Sphere with53

radius 4 and centroid (10,_, 5), such that the Y coordinate of the centroid is unknown (i.e.54

the Y coordinate is an unbound real valued variable). These spatial entities may be defined55

by transforming (translating, scaling) primitive unit-sized entities e.g. a unit cube with side56

length 1 centred at point (0, 0, 0), and a unit sphere with radius 1 centred at (0, 0, 0). We57

then assert that Cube is topologically part of the Sphere:58

?- Cube = translate (vector 5 5 5) (scale 7 unit_cube),
Sphere = translate (vector 10 _ 5) (scale 4 unit_sphere),
topology part_of Cube Sphere.

The query result is:59

false.

This means that no translation can satisfy the required topological relation, due to the cube60

being too large to be part of the sphere.61

In this paper we show that reasoning over the combination of spatial functions and spatial62

relations overcomes numerical instability problems in certain well-defined cases (that would63

otherwise result in logical inconsistencies), and provides significantly more computationally64

e�cient query answering. Returning to the architecture example above, suppose that the65

visibility spaces A,B are disconnected: the intersection of A and B will be the empty (void)66

region, to which every point is necessarily exterior. Therefore, the result that Relation =67

exterior is arrived at based on purely qualitative spatial reasoning, thus avoiding the need68

for potentially expensive and unstable numerical computations of polygon intersections, and69

point-region incidence checks.70

In this paper we develop the foundations for reasoning about spatial functions in logic71

programming, ⁄Prolog(QS), based on the ⁄Prolog framework extended with constraint72

programming. Based on previous work we target a specific class of qualitative spatial73

constraints that we formulate in the framework of polynomial constraint solving [3, 14]. Our74

key contributions, and the novel features provided by our integration of spatial reasoning in75

⁄Prolog, are:76

integrated reasoning about both spatial functions and spatial relations (Section 4);77

by representing spatial functions as abstract syntax trees we can avoid logical inconsist-78

encies that arise from numerical instabilities when computing intermediate functions79

(Section 5).80

a proof-of-concept implementation of ⁄Prolog(QS)with query examples is available at:81

http://think-spatial.org/Resources/LamPrologQS.zip82

That is, the point is exterior to the intersection region meaning that, in the context of
architectural design, the sign and the landmark are not mutually visible from the threshold
position, suggesting that an occupant may lose orientation at that critical location. For a
second example in the context of Constructive Solid Geometry, suppose we have cube Cube
that has side length 7 and whose centroid is located at point (5, 5, 5), and sphere Sphere with
radius 4 and centroid (10,_, 5), such that the Y coordinate of the centroid is unknown (i.e.
the Y coordinate is an unbound real valued variable). These spatial entities may be defined
by transforming (translating, scaling) primitive unit-sized entities e.g. a unit cube with side
length 1 centred at point (0, 0, 0), and a unit sphere with radius 1 centred at (0, 0, 0). We
then assert that Cube is topologically part of the Sphere:
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This means that no translation can satisfy the required topological relation, due to the cube
being too large to be part of the sphere.

In this paper we show that reasoning over the combination of spatial functions and spatial
relations overcomes numerical instability problems in certain well-defined cases (that would
otherwise result in logical inconsistencies), and provides significantly more computationally
efficient query answering. Returning to the architecture example above, suppose that the
visibility spaces A,B are disconnected: the intersection of A and B will be the empty (void)
region, to which every point is necessarily exterior. Therefore, the result that Relation =
exterior is arrived at based on purely qualitative spatial reasoning, thus avoiding the need
for potentially expensive and unstable numerical computations of polygon intersections, and
point-region incidence checks.

In this paper we develop the foundations for reasoning about spatial functions in logic
programming, λProlog(QS), based on the λProlog framework extended with constraint
programming. Based on previous work we target a specific class of qualitative spatial
constraints that we formulate in the framework of polynomial constraint solving [3, 14]. Our
key contributions, and the novel features provided by our integration of spatial reasoning in
λProlog, are:

integrated reasoning about both spatial functions and spatial relations (Section 4);

by representing spatial functions as abstract syntax trees we can avoid logical inconsist-
encies that arise from numerical instabilities when computing intermediate functions
(Section 5).

a proof-of-concept implementation of λProlog(QS)with query examples is available at:
http://think-spatial.org/Resources/LamPrologQS.zip

http://think-spatial.org/Resources/LamPrologQS.zip


B. Li, M. Bhatt, and C. Schultz 26:3

2 Preliminaries: Lambda Prolog

Our λProlog(QS) system builds on lambda logic programming theory originally developed
by Nadathur and Miller [9], and extended with constraint programming [7].

Prolog. [13] We assume basic familiarity with first-order logic. A term is either a variable,
constant, or a compound term (or predicate) f(t1, . . . , tn) with functor f applied to terms
t1, . . . , tn. A Prolog program LP consists of a finite set of universally quantified rules of the
form h← b1, . . . , bn such that h is a predicate, and the expression b1, . . . , bn is a conjunction
of predicates (i.e. rules are Horn clauses). Prolog facts are rules of the form h← >. A query
is a conjunction of predicates b1, . . . , bn. A ground term is a term with no variables. The
Herbrand universe U of LP is the set of ground terms that can be made from the constants
and function symbols of LP . Let q be a query, then qθ is a conjunction of ground predicates
resulting from an assignment of all variables in q to values from U . A query is a logical
consequence of LP if ∃θ(LP |= qθ).

λProlog. λProlog [9] is an extension of Prolog that supports λ-terms as data structures,
and higher-order programming beyond what can be expressed using Horn clauses.1 λ-terms
include variables (e.g. x, y, z), constants (e.g. alphanumerical strings), function application
(s t) and abstraction (λx.s), where s, t are λ-terms. λ-terms enable high-order unification by
λ-conversion and facilitate the manipulation of variable names and substitution. λPrologalso
incorporates a GENERIC search operation for unification so that type errors detected during
parsing are used to 1identify goals that will never succeed.

ELPI [4] is an implementation of λProlog extended with a constraint system based on
the Constraint Handling Rules (CHR) language [5]. We implement spatial relations as CHR
constraints in ELPI. The constraint system extension consists of a constraint store and CHR
rules. Whenever a λ-term is added to the store, all CHR rules are checked to see if a λ-term
match occurs, causing the rule to fire. Rules have the form:

rule tmatch \ tremove | tguard ⇔ tadd

where tmatch, tremove, tadd are λ-terms and tguard is a condition that is either true or false. A
rule is fired if tmatch and tremove are in the store, and tguard is true. This causes term tadd
to be added to the store, and tremove to be removed from the store.

3 Spatial Representation and Reasoning

The qualitative spatial domain (QS) that we focus on in our formal framework consists of
the following ontology.

Spatial Domains. Domain entities in QS are as follows. A 2D point is a pair of reals x, y.
A 3D point is a triple of reals x, y, z. A simple polygon is a 2D spatial region (single piece, no
holes) defined by a list of n vertices (points) p1, . . . , pn (spatially ordered counter-clockwise)
such that the boundary is non-self-intersecting, i.e., there does not exist a polygon boundary

1 In summary, Horn clauses in Prolog are replaced by Hereditary Harrop formulas in λProlog. The role
of resolution refutation as the logical foundation for sound querying in Prolog is replaced by sequent
calculus in λProlog.

COSIT 2019
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edge between vertices pi, pi+1 that intersects some other edge pj , pj+1 for all 1 ≤ i < j < n

and i+ 1 < j. A simple polyhedron is a 3D spatial region (single piece, no holes) defined by
a set of 3D vertices (points) V = p1, . . . , pn and a set of faces f1, . . . , fm where each face is a
triple of vertices v1, v2, v3 ∈ V . A (general) polygon is a set of boundaries and a set of holes
(each set of which are simple polygons) such that every hole is a non-tangential part of one
boundary. A (general) poyhedron is a set of boundaries and a set of holes (each set of which
are simple polyhedra) such that every hole is a non-tangential part of one boundary.

A spatial object o ∈ O is a variable associated with a spatial domain D (e.g. the domain
of 2D points). An instance of an object i ∈ D is an element from the domain. Given
O = {o1, . . . , on}, and domains D1, . . . , Dn such that oi is associated with domain Di, then
a configuration of objects ψ is a one-to-one mapping between object variables and instances
from the domain, ψ(oi) ∈ Di.

For example, a variable o1 is associated with the domain D1 of 2D points. The point (0, 1)
is an instance of D1. A configuration is defined that maps o1 to (0, 1) i.e. ψ(o1) = (0, 1).

Spatial Relations and Spatial Functions. Let D1, . . . , Dn be spatial domains. A spatial
relation r of arity n (0 < n) is defined as:

r ⊆ D1 × · · · ×Dn

Given a set of objects O, a relation r of arity n can be asserted as a constraint that must
hold between objects o1, . . . , on ∈ O, denoted r(o1, . . . , on). The constraint r(o1, . . . , on) is
satisfied by configuration ψ if

(
ψ(o1), . . . , ψ(on)

)
∈ r. For example, if dc is a topological

relation disconnected, and O is a set of polygon objects, then dc(o4, o9) is the constraint
that polygons o4, o9 ∈ O are disconnected. We define topological, size, and incidence spatial
relations, as presented in Table 1.2

A spatial function f of arity n− 1 (1 < n) is defined as:

f : D1 × · · · ×Dn−1 → Dn

That is, each function maps (n− 1) spatial entities to a (single) spatial entity. For example,
if translate is a spatial transformation function, v is a vector (5, 5) and T is a polygon with
vertices ((0, 0), (10, 0), (5, 5)) then (translate v T ) evaluates to the polygon with vertices
((5, 5), (15, 5), (10, 10)). We introduce the unique void spatial entity to ensure that spatial
functions are closed over the spatial domains. For example, the intersection of two discon-
nected polygons is not itself a polygon, but rather the void spatial entity. Spatial functions
defined in λProlog(QS) are presented in Table 1.

4 Spatial Functions in λProlog:

Using the λProlog type system we define fundamental spatial types point, region, and define
vertices, simple polygons, and (general) polygons as functions:

20:4 ⁄Prolog(QS): Functional spatial reasoning in higher order logic programming

triple of vertices v1, v2, v3 œ V . A (general) polygon is a set of boundaries and a set of holes116

(each set of which are simple polygons) such that every hole is a non-tangential part of one117

boundary. A (general) poyhedron is a set of boundaries and a set of holes (each set of which118

are simple polyhedra) such that every hole is a non-tangential part of one boundary.119

A spatial object o œ O is a variable associated with a spatial domain D (e.g. the domain120

of 2D points). An instance of an object i œ D is an element from the domain. Given121

O = {o1, . . . , on}, and domains D1, . . . ,Dn such that oi is associated with domain Di, then122

a configuration of objects Â is a one-to-one mapping between object variables and instances123

from the domain, Â(oi) œ Di.124

For example, a variable o1 is associated with the domain D1 of 2D points. The point (0, 1)125

is an instance of D1. A configuration is defined that maps o1 to (0, 1) i.e. Â(o1) = (0, 1).126

Spatial Relations and Spatial Functions. Let D1, . . . ,Dn be spatial domains. A spatial
relation r of arity n (0 < n) is defined as:

r ™ D1 ◊ · · · ◊ Dn

Given a set of objects O, a relation r of arity n can be asserted as a constraint that must127

hold between objects o1, . . . , on œ O, denoted r(o1, . . . , on). The constraint r(o1, . . . , on) is128

satisfied by configuration Â if
!
Â(o1), . . . , Â(on)

"
œ r. For example, if dc is a topological129

relation disconnected, and O is a set of polygon objects, then dc(o4, o9) is the constraint130

that polygons o4, o9 œ O are disconnected. We define topological, size, and incidence spatial131

relations, as presented in Table 1.2132

A spatial function f of arity n ≠ 1 (1 < n) is defined as:

f : D1 ◊ · · · ◊ Dn≠1 æ Dn

That is, each function maps (n ≠ 1) spatial entities to a (single) spatial entity. For example,133

if translate is a spatial transformation function, v is a vector (5, 5) and T is a polygon with134

vertices ((0, 0), (10, 0), (5, 5)) then (translate v T ) evaluates to the polygon with vertices135

((5, 5), (15, 5), (10, 10)). We introduce the unique void spatial entity to ensure that spatial136

functions are closed over the spatial domains. For example, the intersection of two discon-137

nected polygons is not itself a polygon, but rather the void spatial entity. Spatial functions138

defined in ⁄Prolog(QS) are presented in Table 1.139

4 Spatial Functions in ⁄Prolog140

Using the ⁄Prolog type system we define fundamental spatial types point, region, and define141

vertices, simple polygons, and (general) polygons as functions:142

%% defining instances of topological relationships (extract only)
type contact, disconnect, partial_overlap, part_of relation_topology.
%% defining specialised spatial domains %% polymorphic typing through functions (extract only)
kind point type. type vertex real -> real -> point.
kind region type. type polygon list point -> list point -> region.
kind relation type. type spatial_void region.

We define spatial functions and spatial relations to range over these types (Table 1):143

2 Discrete from means that two regions do not share any interior point, overlaps means they share at
least one interior point, and disconnected means they do not share any point including on the boundary.

2 Discrete from means that two regions do not share any interior point, overlaps means they share at
least one interior point, and disconnected means they do not share any point including on the boundary.
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Table 1 λProlog(QS) relation predicates and functions.

QS Relations Description
size: Relation× Region× Region Size relations between regions:

smaller, equisize, larger.
topology: Relation× Region× Region Contact relations between regions:

contact, disconnected, discrete_from, overlaps.
partial_overlap, part_of, proper_part_of.

incidence: Relation× Point× Region Incidence relations between points and regions:
interior, on_boundary, exterior.

QS Functions Description
centroid: Region→ Point Centre point of region. Centroids of polygons and

polyhedra are the average of their vertices.
extent: Region→ R Area for 2D regions, and volume for 3D regions.
translate: Point× Region→ Region Translates region by a vector defined by the given

point.
scale:R× Region→ Region Scales region by the given positive factor about

the region’s centroid point.
union: Region× Region→ Region Union of two regions.
intersect: Region× Region→ Region Intersection of two regions.
difference: Region× Region→ Region Difference of two regions.

We define spatial functions and spatial relations to range over these types (Table 1):
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Table 1 ⁄Prolog(QS) relation predicates and functions.

QS Relations Description
size:Relation ◊ Region ◊ Region Size relations between regions:

smaller, equisize, larger.
topology:Relation ◊ Region ◊ Region Contact relations between regions:

contact, disconnected, discrete_from, overlaps.
partial_overlap, part_of, proper_part_of.

incidence:Relation ◊ Point ◊ Region Incidence relations between points and regions:
interior, on_boundary, exterior.

QS Functions Description
centroid:Region æ Point Centre point of region. Centroids of polygons and

polyhedra are the average of their vertices.
extent:Region æ R Area for 2D regions, and volume for 3D regions.
translate:Point ◊ Region æ Region Translates region by a vector defined by the given

point.
scale: R ◊ Region æ Region Scales region by the given positive factor about

the region’s centroid point.
union:Region ◊ Region æ Region Union of two regions.
intersect:Region ◊ Region æ Region Intersection of two regions.
di�erence:Region ◊ Region æ Region Di�erence of two regions.

%% signatures of spatial relations %% signatures of spatial functions
type incidence relation_incidence -> point -> region -> o. type centroid region -> point.
type topology relation_topology -> region -> region -> o. type extent region -> real.
type size relation_size -> region -> region -> o. type translate point -> region -> region.

type scale real -> region -> region.
type union region -> region -> region.
type intersect region -> region -> region.
type difference region -> region -> region.

We implement algebraic semantics of spatial relations in CHR. For example, no region is144

disconnected from itself (irreflexive), and if region A is part of region B, and region B is part145

of region C, then A must necessarily be a part of C:146

rule(topology disconnected A B) | (A=B) <=> false. %% disconnected is irreflexive
rule((topology part_of A B), (topology part_of B C)) | true <=> part_of A C. %% part of is transitive

Combined reasoning about spatial functions and relations. We use ⁄-terms to147

capture the higher-order abstract syntax of spatial functions, and reduce this structure by148

rewriting it in a simplified form based on the algebraic properties of those spatial functions.149

For example, the union of a polygon A with itself, expressed as the ⁄-term (union A A), is150

necessarily equivalent to A, and thus we can reduce (union A A) simply to A without any151

further geometric calculations. More generally, given two polygons A,B, then (union A B)152

can reduce to B when A is a part of B. Even more generally still, the arguments A,B need153

not be polygons but can be arbitrarily complex spatial ⁄-terms: if A is part of B then the154

term (union A B) can be reduced to B.155

On the other hand, we can deduce that certain spatial relations must hold between the156

arguments of a function and the result of the function. For example, two non-void regions157

A,B must each necessarily be part of the union of A and B. Similarly, if regions A and158

B topologically overlap then the intersection of A and B must necessarily be part of A159

and part of B. By recursively stepping through a spatial ⁄-term, deducing the relations160

between its parts and simplifying, we can potentially reduce the ⁄-term at a purely symbolic161

level. Once no further reductions can be made, ⁄Prolog(QS) evaluates the true numerical162
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Combined reasoning about spatial functions and relations. We use λ-terms to capture
the higher-order abstract syntax of spatial functions, and reduce this structure by rewriting it
in a simplified form based on the algebraic properties of those spatial functions. For example,
the union of a polygon A with itself, expressed as the λ-term (union A A), is necessarily
equivalent to A, and thus we can reduce (union A A) simply to A without any further
geometric calculations. More generally, given two polygons A,B, then (union A B) can
reduce to B when A is a part of B. Even more generally still, the arguments A,B need not
be polygons but can be arbitrarily complex spatial λ-terms: if A is part of B then the term
(union A B) can be reduced to B.

On the other hand, we can deduce that certain spatial relations must hold between the
arguments of a function and the result of the function. For example, two non-void regions
A,B must each necessarily be part of the union of A and B. Similarly, if regions A and
B topologically overlap then the intersection of A and B must necessarily be part of A
and part of B. By recursively stepping through a spatial λ-term, deducing the relations
between its parts and simplifying, we can potentially reduce the λ-term at a purely symbolic

COSIT 2019
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level. Once no further reductions can be made, λProlog(QS) evaluates the true numerical
spatial functions (union etc.) using computational geometry libraries GPC3 for polygons and
PyMesh4 for polyhedra. In the following section we demonstrate the power of this approach.
The following code excerpt implements the above example cases, and the recursive simplify
predicate for reducing spatial λ-terms:
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spatial functions (union etc.) using computational geometry libraries GPC3 for polygons and163

PyMesh4 for polyhedra. In the following section we demonstrate the power of this approach.164

The following code excerpt implements the above example cases, and the recursive simplify165

predicate for reducing spatial ⁄-terms:166

%% Simplifying abstract syntax trees of spatial functions:
%% (1) If A is part of B, then (union A B) reduces to B
simplify_ (union A B) B :- topology part_of A B.
%% (2) If A is disconnected from B, then (intersect A B) reduces to the spatial void type
simplify_ (intersect A B) spatial_void :- topology discrete_from A B.

%% CHR rules for deducing spatial relations between function arguments and function evaluations:
%% (1) A and B are each part of (union A B)
rule (deduce (union A B)) | true <=>

topology part_of A (union A B), topology part_of B (union A B).
%% (2) if A and B contact, then (intersect A B) is part of A and part of B
rule (deduce (intersect A B)) | (topology overlaps A B) <=>

topology part_of (intersect A B) A, topology part_of (intersect A B) B.

%% Recursive definition of the simplify predicate
simplify (point X Y) (point X Y). %% base case
simplify (polygon B H) (polygon B H). %% base case
simplify (Op Left Right) Simp :- %% recursive step

simplify Left SLeft, simplify Right SRight,
(deduce (Op SLeft SRight)), simplify_ (Op SLeft SRight) Simp.

5 Empirical Evaluation167

In this section we demonstrate key features of our current implementation of ⁄Prolog(QS).168

Ex1: Architectural Design. This example demonstrates how ⁄-term reduction based169

on combined reasoning over spatial functions and relations avoids potentially expensive170

geometric computations. A building consists of objects represented as facts in the knowledge171

base, including a landmark statue that is positioned in a central courtyard that is visible172

from many rooms, and a number of signs. Each object has a visibility space, i.e. a polygon173

describing the points on the floor plan from which an object can be seen (also referred to as174

the isovist). The building has numerous threshold positions from which building occupants175

are expected to need some orientation if they are unfamiliar with the building, such as the176

entrance to a large room. This is modelled as facts in ⁄Prolog(QS):177

%% domain objects
landmark (id lm8263) (object_type statue). sign (id sign73).
threshold_position (point 5.3 82.3).
%% 2D geometric representations of visibility spaces
visibility_space (id lm8263) (polygon [(vertex 52.3 56.0) ...]).
visibility_space (id sign73) (polygon[(vertex 32.3 281.0) ...]).

The architect wants to identify threshold positions from which the occupant does not have178

visible access to both the central statue and at least one sign.179

?- threshold_position Position, landmark Statue (object_type statue),
visibility_space Statue StatueVisibility,
not((

(sign Sign), (visibility_space Sign SignVisibility),
incidence interior Position (intersect StatueVisibility SignVisibility)

)).

Given such visibility constraints, a numerical program will need to compute the intersection of180

every pair of statue and sign visibility polygons to determine whether the threshold position181

3 http://www.cs.man.ac.uk/ toby/alan/software/
4 https://pymesh.readthedocs.io/en/latest/

5 Empirical Evaluation

In this section we demonstrate key features of our current implementation of λProlog(QS).

Ex1: Architectural Design. This example demonstrates how λ-term reduction based on
combined reasoning over spatial functions and relations avoids potentially expensive geometric
computations. A building consists of objects represented as facts in the knowledge base,
including a landmark statue that is positioned in a central courtyard that is visible from many
rooms, and a number of signs. Each object has a visibility space, i.e. a polygon describing
the points on the floor plan from which an object can be seen (also referred to as the isovist).
The building has numerous threshold positions from which building occupants are expected
to need some orientation if they are unfamiliar with the building, such as the entrance to a
large room. This is modelled as facts in λProlog(QS):
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lies in their intersection. By contrast, λProlog(QS) directly reduces the intersection to the
void spatial entity at a purely symbolic level when the visibility polygons are disconnected,
thus avoiding potentially computationally expensive geometric calculations.

Ex2: Avoiding logical inconsistencies from numerical instability. This example demon-
strates how λProlog(QS) guarantees logical soundness for λ-term reduction in cases where
relying on numerically evaluating intermediate terms fails. The powerful polygon set opera-
tion library GPC cannot be used to conclude the trivial equality (see Figure 1):
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lies in their intersection. By contrast, ⁄Prolog(QS) directly reduces the intersection to the182

void spatial entity at a purely symbolic level when the visibility polygons are disconnected,183

thus avoiding potentially computationally expensive geometric calculations.184

Ex2: Avoiding logical inconsistencies from numerical instability. This example185

demonstrates how ⁄Prolog(QS) guarantees logical soundness for ⁄-term reduction in cases186

where relying on numerically evaluating intermediate terms fails. The powerful polygon set187

operation library GPC cannot be used to conclude the trivial equality (see Figure 1):188

?- A = simple_polygon([(vertex 0.0 0.0), (vertex 3.0 0.0), (vertex 3.0 4.0)]),
B = simple_polygon([(vertex 1.0 0.0), (vertex 4.0 1.1), (vertex 0.0 3.2)]),
equal A (union (intersect A B) (difference A B)).

⁄Prolog(QS) gives the query result true, which is correct. In contrast, when the intermediate189

results of (intersect A B) and (di�erence A B) are evaluated using GPC, and then combined190

with a GPC union, the result has two extra vertices that are not precisely on the boundary of A191

due to rounding errors: ((3.0, 0.0), (0.0, 0.0), (0.71, 0.94), (1.7, 2.3), (3.0, 4.0)), thus leading to192

a logical inconsistency that A ”= A. The problem becomes more evident in the 3D case where193

PyMesh generates erroneous mesh artefacts from computing ((S1 \S2)fi (S1 flS2))fiS2 where194

S1 and S2 are two meshes that approximate spheres (Figure 1). The result should be equal195

to (S1 fi S2) but due to the artefacts this equality does not hold. Again, ⁄Prolog(QS) gives196

the correct result through reduction, and only evaluates the actual numerical (geometric)197

results using GPC and PyMesh when no further ⁄-term reductions can be made.198

Figure 1 Cases where numerically evaluating intermediate functions using GPC and PyMesh
results in logical inconsistencies. ⁄Prolog(QS) overcomes these limitations with ⁄-term reduction.

6 Conclusions199

We have presented a framework and proof-of-concept implementation of ⁄Prolog(QS) that200

integrates functional spatial reasoning within logic programming. Our method facilitates201

e�cient high-level reasoning about both spatial functions, domain-specific knowledge and202

spatial constraints in a seamless manner. In the broader AI research field, diverse frameworks203

have been developed that formalise notions of space, including: (a) geometric reasoning204

and constructive solid geometry [6]; (b) relational algebraic semantics of ‘qualitative spatial205

calculi’ [8] (e.g., the SparQ spatial reasoning tool [16]); and (c) axiomatic frameworks of206

mereotopology and mereogeometry [1]. However, the distinction with our research here,207

and what we argue is lacking within the KR community, is a systematic formal account208

and computational characterisation of such spatial theories as a KR language —e.g., suited209

for declarative modelling, commonsense inference and query. In this paper we emphasise210

the power of such a research agenda, as our approach leverages from the strengths of both211

extensive research in functional logic programming and (declarative) spatial reasoning.212
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λProlog(QS) gives the query result true, which is correct. In contrast, when the intermediate
results of (intersect A B) and (difference A B) are evaluated using GPC, and then combined
with a GPC union, the result has two extra vertices that are not precisely on the boundary of A
due to rounding errors: ((3.0, 0.0), (0.0, 0.0), (0.71, 0.94), (1.7, 2.3), (3.0, 4.0)), thus leading to
a logical inconsistency that A 6= A. The problem becomes more evident in the 3D case where
PyMesh generates erroneous mesh artefacts from computing ((S1 \S2)∪ (S1∩S2))∪S2 where
S1 and S2 are two meshes that approximate spheres (Figure 1). The result should be equal
to (S1 ∪ S2) but due to the artefacts this equality does not hold. Again, λProlog(QS) gives
the correct result through reduction, and only evaluates the actual numerical (geometric)
results using GPC and PyMesh when no further λ-term reductions can be made.

Figure 1 Cases where numerically evaluating intermediate functions using GPC and PyMesh
results in logical inconsistencies. λProlog(QS) overcomes these limitations with λ-term reduction.

6 Conclusions

We have presented a framework and proof-of-concept implementation of λProlog(QS) that
integrates functional spatial reasoning within logic programming. Our method facilitates
efficient high-level reasoning about both spatial functions, domain-specific knowledge and
spatial constraints in a seamless manner. In the broader AI research field, diverse frameworks
have been developed that formalise notions of space, including: (a) geometric reasoning
and constructive solid geometry [6]; (b) relational algebraic semantics of “qualitative spatial
calculi” [8] (e.g., the SparQ spatial reasoning tool [16]); and (c) axiomatic frameworks of
mereotopology and mereogeometry [1]. However, the distinction with our research here,
and what we argue is lacking within the KR community, is a systematic formal account
and computational characterisation of such spatial theories as a KR language – e.g., suited
for declarative modelling, commonsense inference and query. In this paper we emphasise
the power of such a research agenda, as our approach leverages from the strengths of both
extensive research in functional logic programming and (declarative) spatial reasoning.
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